Extensions 1→N→G→Q→1 with N=C24 and Q=C3:S3

Direct product G=NxQ with N=C24 and Q=C3:S3
dρLabelID
C24xC3:S3144C2^4xC3:S3288,1044

Semidirect products G=N:Q with N=C24 and Q=C3:S3
extensionφ:Q→Aut NdρLabelID
C24:(C3:S3) = PSO4+ (F3)φ: C3:S3/C1C3:S3 ⊆ Aut C24129+C2^4:(C3:S3)288,1026
C24:2(C3:S3) = (C2xC6):4S4φ: C3:S3/C3S3 ⊆ Aut C24366C2^4:2(C3:S3)288,917
C24:3(C3:S3) = C22xC3:S4φ: C3:S3/C3S3 ⊆ Aut C2436C2^4:3(C3:S3)288,1034
C24:4(C3:S3) = (C2xC6):S4φ: C3:S3/C3S3 ⊆ Aut C24246C2^4:4(C3:S3)288,1036
C24:5(C3:S3) = C62:24D4φ: C3:S3/C32C2 ⊆ Aut C2472C2^4:5(C3:S3)288,810
C24:6(C3:S3) = C22xC32:7D4φ: C3:S3/C32C2 ⊆ Aut C24144C2^4:6(C3:S3)288,1017

Non-split extensions G=N.Q with N=C24 and Q=C3:S3
extensionφ:Q→Aut NdρLabelID
C24.(C3:S3) = C2xC6.7S4φ: C3:S3/C3S3 ⊆ Aut C2472C2^4.(C3:S3)288,916
C24.2(C3:S3) = C2xC62:5C4φ: C3:S3/C32C2 ⊆ Aut C24144C2^4.2(C3:S3)288,809
C24.3(C3:S3) = C23xC3:Dic3central extension (φ=1)288C2^4.3(C3:S3)288,1016

׿
x
:
Z
F
o
wr
Q
<